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Considerable research has been devoted to the role of coarse woody debris 

(CWD) in forest ecosystems.  However, few studies have examined how plant 

distribution and performance are affected by rooting substrate.  I tested whether 

understory plant species showed an affinity for CWD or the forest floor in a young 

coniferous forest in western Washington.  For three common species with differing 

substrate affinities, I also tested whether rooting substrate affected allocation to above- 

and below-ground structures, morphological traits, or overall performance (total biomass 

and plant nitrogen), consistent with differences in moisture availability between 

substrates. 

I tested whether understory species showed significant associations with CWD or 

the forest floor using 1200, 1 x 1 m quadrats in which I compared cover of CWD and 

forest floor (as measures of substrate availability) and the density of shoots of each 

species emerging from each substrate.  To examine relationships between rooting 

substrate and plant performance, I excavated three common understory species: Tiarella 

trifoliata (preference for forest floor), Vaccinium parvifolium (preference for CWD), and 

Maianthemum dilatatum (no preference for either substrate).  For each species, the 

 



 

below-ground structures (rhizomes and roots) and aerial shoots (stems and leaves) of 30 

pairs of plants (one rooted in CWD, one in the forest floor) were measured, then dried to 

determine mass.  Replicate samples of each substrate were collected every 3 wk (June 

through mid-September) to test for differences in volumetric moisture. 

Most species (83%) displayed a preference for substrate; of these, 75% preferred 

the forest floor.  Species preferences for CWD or forest floor did not appear to be related 

to plant stature or any other morphological or life-history trait.  Most species may be 

associated with the forest floor because it is a more predictable and stable substrate.  

Alternatively, preference for the forest floor may relate to competition with mosses: moss 

cover was more than twice as high on CWD as on the forest floor (87 vs. 38%).  Patterns 

of biomass allocation in Maianthemum, Tiarella, and Vaccinium were consistent with 

differences in moisture availability between substrates: plants rooted in the forest floor 

(which was consistently drier over the growing season) allocated greater biomass to 

below-ground structures.  However, effects of substrate on above-ground traits (e.g., leaf 

density, leaf area, and shoot height) were non-significant, and effects on below-ground 

traits were largely inconsistent with differences in moisture availability between 

substrates. 

Depth and lateral spread of rhizome systems may be determined by the physical 

structure of decaying logs rather than by resource availability.  In addition, light may be 

so limiting in these forests that it masks the potential for species to respond to substrate-

related differences in resource availability.  Finally, it is possible that associations with 

substrates are driven not by differences in performance of established plants, but by 

differences in dispersal, germination, and/or early survival. 
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INTRODUCTION 

Coarse woody debris (CWD) plays many important ecological functions in forest 

ecosystems: creating habitat for wildlife; storing moisture, organic matter, and nutrients; 

and providing sites for asymbiotic fixation of nitrogen (Harmon et al. 1986, Stevens 

1997).  Considerable attention has been devoted to the role of CWD as a substrate for tree 

seedlings (e.g., Christy and Mack 1984, Harmon and Franklin 1989, Simard et al. 1998, 

Takahashi et al. 2000, Narukawa and Yamamoto 2003, Zielonka 2006) and forest floor 

bryophytes (e.g., Crites and Dale 1998; Rambo and Muir 1998a, 1998b; Kruys and 

Jonsson 1999; Turner and Pharo 2005).  For example, in the western Cascades of Oregon, 

Christy and Mack (1984) found that 98% of Tsuga heterophylla seedlings regenerated on 

decayed logs although logs typically cover only 4-11% of the forest floor (Spies et al. 

1988).  Zielonka (2006) observed a similar association of Picea abies seedlings with 

CWD in subalpine forests in the Carpathian Mountains of Poland.  Preferential 

establishment of tree seedlings on logs has been attributed to the greater moisture-holding 

capacity of decayed wood and to an escape from competition with understory vegetation 

on the forest floor (e.g., Harmon and Franklin 1986, Simard et al. 1998).  Similarly, 

mosses and liverworts that are sensitive to desiccation or are easily overgrown by 

vascular plants display an affinity for CWD (e.g., Rambo and Muir 1998a, Turner and 

Pharo 2005), and forests with a greater abundance of decayed logs often support richer 

bryophyte communities (Andersson and Hytteborn 1991, Berg et al. 1994, Rambo and 

Muir 1998b). 

In contrast, limited research has been devoted to the role of CWD in the 
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distribution of forest herbs or shrubs (but see Lemon 1945, Thompson 1980).  Previous 

studies suggest that different patterns of association are possible.  In some forests, few 

understory species show an affinity for a particular substrate (e.g., McGee 2001).  

Elsewhere, logs and stumps support only a subset of the forest-floor community 

(Thompson 1980).  Finally, woody substrates and the forest-floor can support distinctly 

different plant communities (Kennedy and Quinn 2001, Lee and Sturgess 2001) although 

these differences can diminish over time as logs decay and are gradually colonized by 

species from the forest floor (e.g., Lee and Sturgess 2001). 

Several mechanisms may explain the associations of some herbaceous or woody 

species with CWD.  By establishing on logs, short-statured species may avoid 

competition with taller, more vigorous plants.  Thus, the ability to germinate and persist 

on logs may be advantageous in the forest understory where light is often limiting 

(Tappeiner and Alaback 1989, Lieffers et al. 1999, Lezberg et al. 2001).  Other resources 

may also be more available in CWD than on the forest floor.  For example, decayed wood 

has greater ability to retain water than does fine litter or mineral soil (Harmon et al. 

1986).  Thus, in forests in which moisture is limiting during the growing season, logs can 

provide more stable sources of water.  Although available mineral N (NO3
- and NH4

+) 

may not differ between woody and non-woody substrates (Bazzaz 1996, Hart 1999, 

Takahashi et al. 2000), some species — particularly those with ecto- or ericoid 

mycorrhizae — may capitalize on organic forms of N in wood (Read 1991; Kaye and 

Hart 1997; Näsholm et al. 1998, 2000; Aerts and Chapin 2000), leading to a positive 

association with these substrates. 
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Differences in resource availability among substrates also have the potential to 

affect plant size and morphology.  Low resource availability can limit growth and 

biomass accumulation in clonal forest herbs (Tappeiner and Alaback 1989, Huffman and 

Tappeiner 1997, Lezberg et al. 2001).  However, plants may also respond to resource 

limitation by changing allocation to above- or below-ground structures (Reynolds and 

Thornley 1982, Chapin et al. 1993, Paz 2003, Trubat et al. 2006).  For example, at low 

levels of light, forest herbs may invest in leaves at the expense of below-ground 

structures (Givnish 1982).  Conversely, where soil moisture or nutrients are limiting, 

allocation may shift to below-ground structures (Paz 2003, Trubat et al. 2006). 

In addition to affecting allocation to above- and below-ground structures, differences 

in resource availability between substrates may influence the morphological attributes of 

plants.  This should be particularly apparent in clonal herbs that are able to vary the 

density or spacing of ramets by adjusting the length or degree of branching of rhizome 

segments or stolons (Bell 1984).  Where resources are limiting, greater foraging should 

lead to longer rhizome segments with lower branching density.  Where resources are 

more plentiful, clonal plants should have shorter rhizome segments and greater branching 

(Slade and Hutchings 1987, de Kroon and Schieving 1991).  However, resource 

acquisition also involves tradeoffs.  If light is very limiting, the costs of investing in 

foraging organs (e.g., rhizomes) are unlikely to be offset by access to additional resources 

(de Kroon and Schieving 1991, Lezberg et al. 2001).  Consequently, under conditions of 

extreme resource limitation, clonal plants may show very limited lateral spread or 
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branching, instead maintaining long-lived ramets in place through annual releafing 

(Ashmun and Pitelka 1984, Huffman et al. 1994, Lezberg et al. 2001). 

In this study, I investigate the role of coarse woody debris in the distribution and 

performance of forest understory plants in a dense, second-growth stand in western 

Washington.  The high density of trees and depauperate nature of the understory suggest 

that both light and below-ground resources are likely to be limiting.  My research has 

three related components.  First, I describe the distributions of understory herbs and 

shrubs with respect to two common substrates, fine litter on the forest floor and CWD.  

Second, I select three species with differing substrate affinities, Tiarella trifoliata 

(associated with forest floor), Vaccinium parvifolium (associated with CWD), and 

Maianthemum dilatatum (no association with either substrate), and compare biomass 

allocation, morphological traits, and overall performance (total biomass and plant 

nitrogen) between individuals rooted on the forest floor and on CWD.  Finally, I quantify 

differences in moisture content and light availability between substrates and interpret 

patterns of plant performance with respect to these differences. 

I pose two general and several specific hypotheses to guide my comparative 

studies of plant performance: 

1. Plants rooted in CWD or in the forest floor will differ in patterns of biomass 

allocation and in morphological traits in ways that are consistent with the greater 

moisture-holding capacity of CWD.  More specifically, plants rooted in CWD 

will have: 

a. reduced allocation to below-ground structures (i.e., greater ratio of above- to 
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below-ground biomass), 

b. taller shoots, more leaves, and/or greater leaf area, and  

c. smaller, shallower root systems (i.e., decreased root spread, area, and depth, 

and shorter rhizomes with greater density of branching and of rhizome tips). 

2. Species will show differences in overall performance on CWD and the forest floor 

consistent with their affinities for these substrates. More specifically,  

a. Vaccinium will exhibit greater overall performance (total biomass, plant N) on 

CWD than on the forest floor, 

b. Tiarella will exhibit greater overall performance on the forest floor, and 

c. Maianthemum will show comparable performance between substrates. 
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METHODS 

Study Site 

The study site is in the Cedar River Municipal Watershed in the western foothills 

of the central Cascade Mountains of Washington (47°20’N, 121°32’W).  It lies at 600 m 

elevation on a shallow southwest-facing slope (<10%) above Bear Creek.  Soils are 

classified as Kaleetan sandy loam (http://websoilsurvey.nrcs.usda.gov/app/ 

WebSoilSurvey.aspx).  Climate is maritime, with cool wet winters and warm, relatively 

dry summers (Franklin and Dyrness 1988).  Mean maximum daytime temperatures occur 

in August (22°C); mean minimum daytime temperatures occur in January (-1°C).  Annual 

precipitation averages 256 cm, with ~50% falling between November and February.  

Annual snowfall averages 166 cm, concentrated between December and March (climate-

station data from nearby Cedar Lake; 475 m elevation; 1931-2005, Western Regional 

Climate Center, http://www.wrcc.dri.edu/summary/climsmwa.html). 

The study forest regenerated naturally following clearcut logging ~60 yr ago.  

Historical data are lacking, but stumps indicate previous dominance by old-growth 

Pseudotsuga menziesii, Tsuga heterophylla, and Thuja plicata.  The current stand is 

dense with 1,425 stems/ha (trees ≥1.4 m tall) and a basal area of 75 m2/ha (D. Sprugel, 

unpublished data).  Tsuga heterophylla is the dominant species (70% of stems, 58% of 

basal area), with lesser amounts of P. menziesii  (21% of stems, 36% of basal area).  

Understory light is uniformly low, generally <5% of above-canopy light (K. Grieve, 

unpublished data).  Coarse woody debris is abundant on the forest floor, a result of 

previous timber harvest and ongoing mortality due to self-thinning.  Understory plant 
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cover is very low, averaging 3% (C. Halpern, unpublished data) (Fig. 1). 

Species Associations with Substrates 

 Data were collected during summer 2005 to assess the abundance and potential 

associations of plant species with substrates.  A total of 1200, 1 x 1 m quadrats were 

sampled.  These were arrayed continuously along three, 400-m transects spaced 20 m 

apart, parallel with the slope contour.  Within each quadrat an estimate was made of the 

percentage of ground surface covered by the two primary substrates, forest floor (mainly 

conifer needles and fine branches <10 cm diameter) and coarse woody debris (CWD; 

fresh or decayed logs >10 cm diameter).  For each understory species (including trees 

<1.4 m tall), the number of shoots that emerged from each substrate was tallied; for fern 

species, the number of fronds was tallied.  Nomenclature follows Hitchcock and 

Cronquist (1973). 

To test whether species showed a significant association with CWD or forest 

floor, confidence limits for population proportions (Zar 1999) were calculated (Appendix 

I).  For each species with a frequency of occurrence ≥1% (present in ≥12 plots), I 

estimated the proportion of stems rooted in CWD and a 95% confidence interval (CI) 

around the mean using the method of Zar (1999).  A species whose lower confidence 

limit was greater than the mean cover of CWD (20.1%) was inferred to have a positive 

association with CWD; conversely, a species whose upper confidence limit was less than 

the cover of CWD was inferred to have a positive association with forest floor (i.e., a 

negative association with CWD).  All other species were assumed to exhibit no substrate 

preference. 
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Fig. 1.  A portion of the study site at Bear Creek.  The stand was logged ~60 years ago 
and has regenerated naturally.  Note the density of Tsuga heterophylla, abundance of 
coarse woody debris on the forest floor, and limited development of understory 
vegetation. 
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Comparative Analyses of Substrate Effects on Plant Performance 

Study species. —  Based on the results of species-substrate relationships, three 

species were selected for more intensive study to examine whether rooting substrate 

influenced plant performance.  Maianthemum dilatatum (Liliaceae), Tiarella trifoliata 

(Saxifragaceae), and Vaccinium parvifolium (Ericaceae), were selected because (1) they 

were among the most common in the understory, (2) they could be found on both CWD 

and the forest floor, and (3) they showed differing associations with substrates: 

Vaccinium with CWD, Tiarella with the forest floor, and Maianthemum with neither 

substrate. 

Maianthemum dilatatum (Wood) Nels. and Macbr. is a perennial, rhizomatous 

herb common in moist temperate forests of the Pacific Northwest where temperatures are 

relatively cool and moisture is fairly abundant (LaFrankie 1986, Henderson et al. 1989).  

Leaves are cordate to sagittate in shape, usually singular, and 5-11 cm long (Hitchcock et 

al. 1969).  Maianthemum has a modular growth form.  Ramets consist of a rhizome 

segment initiated at the base of a parent shoot and a below-ground short shoot that gives 

rise to a vegetative (leafy) or sexual shoot (leafy with a terminal inflorescence).  Lezberg 

et al. (2001) provide a detailed description of its growth form and clonal architecture. 

Tiarella trifoliata L. is a perennial, rhizomatous herb, but non-clonal.  Its 

distribution extends from southeast Alaska to the west coast of California, and includes 

Washington, Oregon, and Idaho (Soltis et al. 1992).  Tiarella is usually found in moist 

woods and near streams (Hitchcock et al. 1969).  Tiarella has three varieties that overlap 

in their distributions, vars. trifoliata, unifoliata (Hook.), and laciniata (Hook.); these 
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differ primarily in the width and relative dissection of leaf blades (Hitchcock and 

Cronquist 1973).  Leaves are generally 5-12 cm long and cordate, and vary from 

palmately lobed (var. unifoliata) to divided into three separate leaflets, each with shallow 

lobes (var. trifoliata) or nearly divided (var. laciniata) (Hitchcock et al. 1969).  All were 

present in my study site with varying abundance. 

Vaccinium parvifolium Smith occurs west of the Sierra Nevada and Cascade 

Mountains from Washington to California, and in coastal areas of British Columbia and 

Alaska (Camp 1942).  It is common in the Picea sitchensis, Tsuga heterophylla, and 

Abies amabilis forest zones of western Washington and northwestern Oregon (Franklin 

and Dyrness 1988).  It is a deciduous shrub that can grow to 4 m tall, but juvenile plants 

(up to 4-5 yr) maintain a trailing habit (Camp 1942, Hitchcock and Cronquist 1973).  

Branches are green and strongly angled; leaves are deciduous, alternate, 1-2 cm long, and 

oval to elliptical-in shape (Hitchcock et al. 1969). 

Sample selection and plant excavations. —  From 50 pairs of flagged individuals 

(focal shoots) of each species, 30 were randomly chosen for excavation and detailed 

measurement.  Each sample pair consisted of a plant rooted on a decayed log (decay class 

IV; Fogel et al. 1973) and a nearby plant rooted in the forest floor; pairs were generally 

within 1 m of each other.  All plants were selected from within a total area of 1.5 ha.  

Vaccinium was distributed throughout this area, but most Maianthemum and Tiarella 

were from a smaller area of ~0.3 ha.  In addition, for Vaccinium, relatively small plants 

(generally <15 cm tall) were chosen to facilitate excavation and to ensure that below-

ground structures were largely contained within the target substrate. 
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Beginning at the focal shoot of each plant, all below-ground structures and 

associated aerial shoots were carefully measured, mapped, and excavated using hand 

tools (Antos and Zobel 1984, Lezberg et al. 2001) (Appendix II).  Excavations of 

Maianthemum included the entire clonal fragment (sensu Antos 1988) terminating in live 

or dead rhizome tips.  Below-ground systems, particularly those of Maianthemum, often 

covered large areas and occasionally traveled off the intended substrate.  For each 

sample, I recorded the proportion of the below-ground system present in each substrate.  

On average, plants rooted in CWD had 96% (Maianthemum) to 100% (Tiarella and 

Vaccinium) of their below-ground structures in the intended substrate.  Corresponding 

values for plants rooted in the forest floor ranged from 90% (Maianthemum) to 95% 

(Tiarella). 

Plant measurements. —  Above-ground structures were quantified in several 

ways.  For each plant, I counted the number of shoots.  For each shoot I also measured 

height (Maianthemum, consisting of a single petiole and leaf) or length (Vaccinium, with 

the shoot stretched linearly).  Shoot height was not measured for Tiarella because some 

plants had flowering stems while others did not.  For all plants, I also counted total 

number of leaves (leaf density per plant), then separated leaves from stems and estimated 

total leaf area from a scanned image.  Leaf area calculations were made using ImageJ 

1.36b software (Wayne Rasband, National Institute of Health, Bethesda, Maryland).  

From total leaf area I then calculated the average area of a leaf (mean leaf area). 

Detailed measurements of below-ground structures were also made, either directly 

during excavation or subsequently from maps constructed during excavation (see Antos 
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and Zobel 1984) (Fig. 2).  Length and width of root system spread were expressed as the 

greatest longitudinal length and the perpendicular width of the root system, respectively.  

Rooting depth was estimated as the maximum depth of the root system measured from 

the top of the litter layer on mineral soil or on CWD.  Rooting area was calculated as the 

product of length and width of root spread.  Rooting volume was calculated as the 

product of rooting area and rooting depth.  To determine whether log shape influenced 

rooting habit, root system shape was calculated as the ratio of length and width of the 

root system (with the expectation that plants on logs would have larger ratios). 

 Because of its modular, clonal habit, I measured several additional characteristics 

of the below-ground systems of Maianthemum.  Each clonal fragment possessed multiple 

rhizome tips as a result of branching.  I recorded the number of rhizome tips that were 

live (white and growing) and dead (brown and often fragmented) and expressed these 

relative to total rhizome length (i.e., density of live and dead tips; Fig. 2; see also Lezberg 

et al. 2001); density of total tips was then calculated by summation.  Total rhizome length 

was calculated as the sum of the lengths of all rhizome segments.  Density of rhizome 

branching was expressed as number of intersections (branching points) divided by total 

rhizome length. 

After plants were excavated, they were transported to the lab, carefully rinsed to 

remove soil, and separated into above- and below-ground parts.  These were dried at 

70°C for 48 hr and weighed to the nearest 0.01 g.  Above- and below-ground biomass 

was recorded; total biomass was then calculated by summation.  For each species, two 

composite samples from each substrate were created from the 30 original plants to  
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Fig. 2.  Example of an excavation map for a clonal fragment of Maianthemum dilatatum.  
All rhizome segments (lengths between branches or aerial shoots) were measured. 
Circled numbers (used only during excavation) represent aerial shoots (petiole and leaf); 
rhizome tips were classified as live or dead (as labeled). 
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achieve enough mass for analysis of total plant N (using the automated combustion 

method; Gavlack et al. 2003).  Although foliar N may be a better indicator of nutrient 

availability, whole plants were processed because of insufficient mass in leaves.  

Nevertheless, total plant N and foliar N are typically correlated (Kerkhoff et al. 2006).  

Analyses were performed by A and L Western Agricultural Laboratories, Inc. (Medford, 

Oregon). 

Additional measurements of the local environment. —  I took several additional 

measurements to test whether there were consistent differences in other attributes of the 

local environment that might explain, or contribute to, differences in plant performance 

between substrates.  These included cover (%) of mosses and vascular plants (herbs, 

shrubs, and tree seedlings), and depth of litter.  Cover estimates were made with a 0.2 x 

0.5 m quadrat centered on the focal shoot; litter depth was measured near the base of the 

focal shoot.  A rectangular quadrat was chosen because it closely resembled the shape of 

the log, and therefore measurements taken within the quadrat accurately reflected the 

local environment. 

Differences in moisture and light availability. —  To test for differences in 

moisture availability between substrates, I collected samples of CWD and forest floor 

soil.  Samples were paired as a decay-class IV log and adjacent forest floor (typically <50 

cm away), but were not associated with excavated plants.  To quantify volumetric 

moisture, 20 samples of each substrate were collected every 3 wk from late June to mid-

September 2005 (a total of five measurement times) using a Model 0200 Soil Core 

Sampler (Soilmoisture Equipment Corp., Goleta, California).  Moss and larger organic 

 



15 

material (including fine branches and conifer needles) were first manually removed from 

the log or forest floor.  A sample of 76.5 cm3 (5.7 cm diameter) was extracted from the 

substrate between a depth of 2 and 5 cm, the region within which plants roots were most 

dense.  Samples were weighed wet, dried at 35ºC for 48 hr, and weighed again.  

Volumetric moisture was computed as the difference between wet and dry weights 

divided by the sample volume. 

I also tested whether light availability (photosynthetic photon flux density, PPFD) 

differed above plants rooted on CWD and the forest floor.  PPFD (µmol m-2s-1) was 

measured with an AccuPAR LP-80 ceptometer (Decagon Devices Inc., Pullman, 

Washington).  Measurements were taken after excavations were completed, at a height of 

1 m above each sample location (n = 30 samples per species per substrate).  Readings 

were made between 10:50 and 12:00 hr (when the sun was most directly overhead) on 17 

October 2006, a uniformly overcast day. 

Analyses. —  To test whether biomass allocation or morphology differed between 

plants rooted on CWD and forest floor (hypothesis 1), I conducted two-way analysis of 

variance (ANOVA) on each measure of plant performance.  Sources of variation included 

substrate (df = 1), species (df = 2), and a substrate x species interaction (df = 2).  If the 

interaction was significant, a paired t-test was conducted to identify the species for which 

there was a significant effect of substrate.  For below-ground characteristics measured 

only for Maianthemum, I used paired t-tests to assess differences between substrates. 

A series of paired t-tests was also used to determine whether individual species 

showed differences in overall performance (total biomass) between substrates consistent 
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with their affinities for these substrates (hypothesis 2).  Because there was sufficient plant 

material for only two composite samples of plant N per species by substrate, differences 

in plant N were not tested statistically. 

To test whether additional, measured attributes of the local environment differed 

for plants rooted on CWD and forest floor (and thus, might explain differences between 

substrates), I conducted two-way ANOVA on total cover of mosses and vascular plants, 

and on litter depth.  Sources of variation included substrate (df = 1), species (df = 2), and 

a substrate x species interaction (df = 2).  If the interaction was significant, a paired t-test 

was conducted to identify the species for which there was a significant effect indirectly 

associated with substrate. 

Two-way ANOVA was also used to test for differences in moisture and light 

availability between substrates.  For volumetric moisture, sources of variation included 

substrate (df = 1), sampling date (df = 4), and their interaction (df = 4).  (Because 

measurements were taken from different locations on each sampling date, repeated 

measures ANOVA could not be employed).  For light availability, sources of variation 

included substrate (df = 1), species (df = 2), and their interaction (df = 2). 

Statistical analyses were conducted using the mixed model procedure in Statistical 

Analysis System (SAS) version 9.1 (SAS Institute, Inc. 1999).  An alpha level of 0.05 

was used to determine statistical significance. All data met the assumptions of normality 

and homogeneity of variance (based on Levene’s test), thus transformations were not 

necessary. 
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RESULTS 

Species Associations with Substrates 

A total of 48 species was recorded in the 1200 quadrats (Table 1).  The vast 

majority (97%) of quadrats contained stems of at least one species.  Average and median 

stem densities were 26.3/m2 (SE = 33.3) and 15.0/m2, respectively.  Understory trees 

(<1.4 m tall but mostly first- and second-year seedlings) occurred in 87% of quadrats 

with a combined average density of 8.6/m2.  Among the five tree species, Tsuga 

heterophylla comprised 74% of stems, and conifers 99.98% of stems.  Tall shrubs 

occurred in 62% of quadrats with an average density of 6.4 stems/m2; most (97%) were 

Vaccinium parvifolium.  Sub-shrubs (woody species, either short-statured or with a 

creeping or trailing habit) were present in 31% of quadrats with an average density of 4.1 

stems/m2.  Ferns (five species) occupied 28% of quadrats with an average frond density 

of 1.6/m2.  Herbs occupied 48% of quadrats with an average stem density of 5.7/m2.  Of 

25 herb species, four occurred in >10% of quadrats (Clintonia uniflora, Tiarella 

trifoliata, Smilacina stellata, and Maianthemum dilatatum). 

CWD covered an average of 20.1% of the ground surface.  Of the 29 understory 

species tested (those with ≥1 % frequency), six showed positive associations with CWD 

(one tree, two tall shrubs, one sub-shrub, and two ferns) and 18 showed positive 

associations with forest floor (one tree, four sub-shrubs, three ferns, and ten herbs) (Fig. 

3). 
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Table 1.  Frequency and density of understory species at Bear Creek.  Frequency is the 
proportion of quadrats in which a species occurred (n = 1200).  Values <0.01 are listed as 
“t” (trace). 

Growth form Species 
Frequency 

(%) 
Mean density 

(no./m2) SE 
Trees Tsuga heterophylla 68.58 6.35 0.36 
 Abies spp. (A. amabilis/A. procera) 61.17 2.20 0.11 
 Acer macrophyllum   0.08 t t 
 Thuja plicata   0.17 t t 
 Alnus rubra   0.08 t t 
 Total trees 86.33 8.56 0.39 
Tall shrubs Vaccinium parvifolium 60.08 6.19 0.27 
 Menziesia ferruginea   5.08 0.12 0.02 
 Oplopanax horridus   1.17 0.01 t 
 Acer circinatum   0.83 0.02 0.01 
 Gaultheria shallon   0.50 0.01 0.01 
 Sorbus sitchensis   0.08 t t 
  Total tall shrubs 61.58 6.36 0.27 
Sub-shrubs Cornus canadensis 16.25 1.13 0.02 
 Linnaea borealis   9.33 2.44 0.42 
 Chimaphila menziesii   9.33 0.27 0.03 
 Rubus ursinus   3.42 0.07 0.01 
 Rubus pedatus   1.67 0.15 0.04 
 Rubus lasiococcus   1.25 0.02 0.01 
  Total sub-shrubs 30.83 4.08 0.46 
Ferns Pteridium aquilinum 21.25 0.43 0.03 
 Dryopteris austriaca   3.83 0.14 0.02 
 Athyrium filix-femina   4.08 0.37 0.07 
 Blechnum spicant   2.92 0.34 0.08 
 Polystichum munitum   3.00 0.28 0.07 
 Total ferns 27.75 1.57 0.16 
Herbs Clintonia uniflora 29.33 1.31 0.09 
 Tiarella trifoliata 15.17 1.23 0.14 
 Smilacina stellata 15.08 0.85 0.09 
 Maianthemum dilatatum 12.00 0.69 0.07 
 Viola sempervirens   6.83 0.76 0.14 
 Streptopus amplexifolius   5.92 0.21 0.04 
 Listera cordata   4.08 0.16 0.04 
 Goodyera oblongifolia   3.42 0.07 0.01 
 Trillium ovatum   3.08 0.04 0.01 
 Achlys triphylla   2.83 0.11 0.03 
 Pyrola uniflora   2.25 0.11 0.03 
 Disporum spp.   1.50 0.02 0.01 
 Corallorhiza maculata    1.33 0.05 0.11 
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Table 1.  Continued. 

Growth form Species 
Frequency 

(%) 
Mean density 

(no./m2) SE 
Herbs (cont.) Galium triflorum   0.92 0.05 0.02 
 Viola glabella   0.75 0.02 0.01 
 Graminoid sp.   0.58 0.01 t 
 Pyrola chlorantha   0.42 0.02 0.01 
 Asarum caudatum   0.33 0.02 0.01 
 Aruncus sylvester   0.17 t t 
 Hypopitys monotropa   0.17 t t 
 Listera caurina   0.17 t t 
 Lilium columbianum   0.08 t t 
 Osmorhiza chilensis   0.08 t t 
 Stenanthium occidentale   0.08 t t 
 Trautvetteria caroliniensis   0.08 t t 
 Trientalis latifolia   0.08 t t 
  Total herbs 48.08 5.73 0.41 
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Fig. 3.  Population proportions for understory species with >1% frequency (by growth 
form, arranged in descending order of preference for CWD).  Trees were ≤1.4m tall.  
Points represent mean proportions of shoots on CWD; bars are 95% confidence intervals.  
A species whose lower confidence limit is greater than the proportion of ground surface 
covered by CWD (solid horizontal line, 0.20) has a positive association with CWD; a 
species whose upper confidence limit is lower than this value has a positive association 
with the forest floor.  All other species display no substrate association.  Codes are: Abies 
= Abies spp. (A. procera / A. amabilis), ACTR = Achlys triphylla, ATFI = Athyrium filix-
femina, BLSP = Blechnum spicant, CHME = Chimaphila menziesii, CLUN = Clintonia 
uniflora, COCA = Cornus canadensis, COME = Corallorhiza maculata, DISPO = 
Disporum spp., DRAU2 = Dryopteris austriaca, GOOB = Goodyera oblongifolia, 
LIBO2 = Linnaea borealis, LICO3 = Listera cordata, MADI2 = Maianthemum 
dilatatum, MEFE = Menziesia ferruginea, OPHO = Oplopanax horridus, POMU = 
Polystichum munitum, PTAQ = Pteridium aquilinum, PYUN = Pyrola uniflora, RULA = 
Rubus lasiococcus, RUPE = Rubus pedatus, RUUR = Rubus ursinus, SMST = Smilacina 
stellata, STAM = Streptopus amplexifolius, TITR = Tiarella trifoliata, TROV = Trillium 
ovatum, TSHE = Tsuga heterophylla, VAPA = Vaccinium parvifolium, VISE = Viola 
sempervirens. 
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Comparative Analyses of Substrate Effects on Plant Performance 

Substrate effects on biomass allocation and morphology. —  Consistent with 

hypothesis 1a, plants rooted in CWD and forest floor differed in their patterns of biomass 

allocation.  Plants rooted in CWD allocated significantly more biomass to above-ground 

structures (Fig. 4).  This pattern was consistent for Maianthemum, which invested more 

in below-ground structures (ratio <1), as well as Tiarella and Vaccinium, which invested 

more in above-ground structures (ratios >1).   

In contrast to patterns of biomass allocation, I was unable to detect a significant 

effect of substrate on any above-ground trait, including leaf density, shoot height, total 

leaf area, and mean leaf area (hypothesis 1b; Fig. 5). 

Patterns of variation in below-ground traits (hypothesis 1c) were more complex, 

but largely inconsistent with my expectations (Fig. 6).  Length of root spread and root 

system shape (ratio of length to width of root system) were significantly greater in CWD 

than in the forest floor.  Although rooting depth differed between substrates for Tiarella 

and Maianthemum, for only Tiarella were trends consistent with hypothesis 1c: root 

systems were half as deep in CWD as in the forest floor.  In contrast, Maianthemum 

exhibited deeper root systems in CWD.  Width of root spread, rooting area, and rooting 

volume differed among species, but showed no response to substrate (Fig. 6). 

Three of five of the additional below-ground traits measured for Maianthemum 

showed patterns inconsistent with hypothesis 1c: density of dead rhizome tips, total 

density of rhizome tips, and rhizome branching density were significantly lower for 

plants  
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Fig. 4.  Ratio of above- to below-ground biomass for Maianthemum dilatatum, Tiarella 
trifoliata, and Vaccinium parvifolium rooted in CWD and the forest floor.  Values are 
means +1 SE.  P values are from two-way analysis of variance. 
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Fig. 5.  Above-ground morphological traits of Maianthemum dilatatum, Tiarella 
trifoliata, and Vaccinium parvifolium (means +1 SE) rooted in CWD and the forest floor.  
P values are from two-way analysis of variance.  Shoot height was not measured for 
Tiarella (see Methods). 
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Fig. 6.  Below-ground morphological traits of Maianthemum dilatatum, Tiarella 
trifoliata, and Vaccinium parvifolium (means +1 SE) rooted in CWD and the forest floor.  
P values are from two-way analysis of variance.  Where a substrate x species interaction 
was significant, separate t-tests were conducted by species.  Asterisks indicate a 
significant substrate effect (p ≤ 0.05). 
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rooted in CWD (Fig. 7).  Density of live rhizome tips and total rhizome length were 

similar between substrates (Fig. 7). 

Of the additional attributes of local environment measured in association with 

substrates (i.e., cover of mosses and vascular plants, depth of litter), only moss cover 

showed significant variation (Fig. 8).  Cover was ~50% greater on CWD supporting 

Vaccinium and ~300% greater on CWD supporting Tiarella. 

Individual species responses to substrate. —  In contrast to hypothesis 2, there 

were no differences in overall performance (total biomass or plant N) between substrates 

for any of the species (Fig. 9).  Plant N ranged from 1.00% in Vaccinium to 1.44% in 

Tiarella (Fig. 10). 

 Differences in moisture and light availability. —  Volumetric moisture declined 

significantly over the growing season in both substrates.  However, as expected, moisture 

content was consistently greater in CWD than in the forest floor soil (Fig. 11a).  This 

difference was large (56-76% greater) through much of the summer.  Light availability 

differed significantly above plants representing each species (highest for Tiarella), but it 

did not differ between substrates (Fig. 11b).  In absolute terms, light levels at the forest 

floor averaged ~5% of above-canopy light (K. Grieve, unpublished data).  
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Fig. 7.  Additional below-ground morphological traits for Maianthemum dilatatum 
(means +1 SE) rooted in CWD and the forest floor.  P values are from paired t-test for 
means. 
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Fig. 8.  Additional attributes of the local environment (means +1 SE) associated with 
CWD and the forest floor.  P values are from two-way analysis of variance. Where a 
substrate x species interaction was significant, separate t-tests were conducted by species; 
asterisks indicate a significant substrate effect (p ≤ 0.05). 
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Fig. 9.  Total plant biomass for Maianthemum dilatatum, Tiarella trifoliata, and 
Vaccinium parvifolium (means +1 SE) rooted in CWD and the forest floor.  P values are 
from paired t-tests. 
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Fig. 10.  Plant nitrogen (N) content for Maianthemum dilatatum, Tiarella trifoliata, and 
Vaccinium parvifolium (means +1 SE) rooted in CWD and the forest floor.  Effects of 
substrate and species were not tested due to limited replication (n = 2 composite samples 
per species per substrate). 
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Fig. 11.  Differences in (a) volumetric moisture and (b) light availability for CWD and 
forest floor substrates.  Values are means ±1 SE (n = 20, Jun-Aug; n = 10, Sep).  P values 
are from two-way analysis of variance. 
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DISCUSSION 

Substrate Affinities of Understory Plants 

 Most understory species (83%) displayed a substrate association, and many more 

species preferred forest floor to CWD.  These associations are consistent with those 

observed in northeastern hardwood forests (McGee 2001): of the herbaceous plant 

species that displayed a substrate preference, six of seven were associated with the forest 

floor.  Rooting on the forest floor may be advantageous for several reasons.  First, the 

forest floor is a more predictable substrate than CWD; the latter becomes available only 

when a tree falls.  In addition, the forest floor provides a more physically stable substrate.  

In contrast, as logs decay, bark sloughing and wood fragmentation can lead to plant 

mortality or exposure of root systems (Harmon et al. 1986, Harmon and Franklin 1989).  

Release of nitrogen may also be more rapid from the forest floor than from CWD (Sollins 

et al. 1987, Harmon and Hua 1991; but see Hart 1999).  Finally, in these dense young 

forests, germination and early survival may be greater on the forest floor because 

competition from mosses is lower: moss cover was more than twice as high on CWD 

(87% vs. 38% on the forest floor).  Because moss mats can dry out before roots of 

germinants reach the substrate, they can act as barriers to seedling establishment 

(Harmon and Franklin 1989). 

In contrast, many fewer species showed an association with CWD.  For smaller 

growth forms, CWD may provide an escape from competition with taller plants on the 

forest floor (Messier 1992, Huffman et al. 1994).  However, differences in stature cannot 

be used to explain substrate associations in these forests:  three of six species associated 
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with CWD were among the tallest growth forms (trees and tall shrubs).  No other simple 

morphological or life-history trait (e.g., leaf longevity, clonality, mode of dispersal, or 

seral status) can be invoked to explain the substrate preferences of most species. 

It is possible that species associated with CWD are limited by moisture 

availability at some point in their life histories and thus benefit from the greater retention 

of water by logs.  Tsuga heterophylla seedlings, for example, are particularly sensitive to 

moisture stress (Williamson 1976, Christy and Mack 1984) and exhibit a very strong 

association with CWD.  It is also possible that some species are associated with CWD 

because they possess ecto- or ericoid mycorrhizal associations that allow them to 

efficiently access organic forms of nitrogen (see review in Kaye and Hart 1997).  

However, evidence of significant or preferential uptake of organic N remains equivocal 

(e.g., Bending and Read 1996, Näsholm et al. 1998, Persson et al. 2003, Bennett and 

Prescott 2004).  Moreover, for species compared in this study, N concentrations were 

comparable between individuals rooted in CWD and the forest floor, suggesting little 

difference in N availability between substrates or in the abilities of species to acquire N. 

Despite the prevalence of species-substrate associations in this forest, relatively 

few constituted obligate (or nearly obligate) relationships (see Appendix I, Table 2).  One 

likely explanation is that resource availability or quality may not have been sufficiently 

different between substrates to restrict the distributions of species.  Decayed logs were 

covered to varying depths by fine litter, and highly decayed wood was present in the 

forest floor.  Species may thus encounter characteristics of both substrates, regardless of 

rooting location.  Contrasts in substrate quality may have been stronger had I sampled 
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fresh logs; however, these were relatively uncommon and supported fewer vascular 

plants.  Finally, many herbaceous and semi-woody species in these forests are clonal 

(Hitchcock et al. 1969, Antos and Zobel 1984, Lezberg et al. 1999) with an ability to 

place roots and rhizomes in multiple substrates.  From a functional perspective, 

distinguishing a primary rooting substrate may be difficult. 

Substrate Effects on Understory Plant Performance 

 I hypothesized that plants rooted in CWD and the forest floor would show 

differences in biomass allocation and morphology in a manner consistent with differences 

in moisture availability between substrates.  Patterns of biomass allocation were 

consistent with this expectation: plants rooted in the forest floor (characterized by lower 

volumetric moisture throughout the growing season) allocated greater biomass to below-

ground structures.  Similar patterns of allocation along resource gradients have been 

observed in other forest plants.  For example, in Neotropical forests, Paz (2003) observed 

that woody seedlings showed the greatest allocation to roots in forests with the longest 

dry season.  Similarly, in a transplant experiment, bamboo from a subtropical evergreen 

forest showed the greatest allocation to below-ground structures under the lowest levels 

of mean summer moisture (Qing et al. 2004). 

In contrast to patterns of biomass allocation, differences in plant morphology 

were less consistent with my expectations.  Root-system length and shape (ratio of length 

to width) differed between substrates, reflecting the tendency for root systems to develop 

linearly along logs.  Differences in rooting depth between substrates, varied, however, 

among species.  Roots of Tiarella grew significantly deeper in the forest floor, but 
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counter to expectation, roots of Maianthemum were deeper in CWD.  This contrast may 

reflect an interaction between the physical structure of logs and differences in the root 

systems of species.  Wood may limit depth of rooting in non-rhizomatous species that 

possess finer roots (Tiarella).  In contrast, vigorous rhizomes of clonal species such as 

Maianthemum can follow the grain of decay in logs, resulting in deeper penetration of 

root systems. 

Plant foraging theory and empirical studies suggest that clonal herbs should 

develop more compact, highly branched rhizome systems in environments with greater 

resource availability (Slade and Hutchings 1987, de Kroon and Schieving 1991, 

D’Hertefeldt and Jónsdóttir 1994) and more diffuse, less branched rhizome systems 

where resources are more limiting or more heterogeneous in space.  Interestingly for 

Maianthemum, branching of rhizome systems and densities of dead and total rhizome tips 

were lower in CWD where resource availability, in this case moisture, was greater.  This 

counterintuitive result could be explained if foraging were driven by differences in N 

availability, rather than moisture.  On the other hand, plant N was comparable for 

individuals rooted in CWD and the forest floor, suggesting minimal differences in 

resource availability between substrates.  Alternatively, morphological plasticity in 

Maianthemum may be constrained by the physical properties of CWD.  Rhizome systems 

in CWD tended to be linear, following the grain of decay; this resulted in fewer 

opportunities for branching compared to the forest floor.  

I also hypothesized that individuals of Vaccinium, Tiarella, and Maianthemum 

would differ in overall performance (total biomass and plant N) between substrates in a 
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manner consistent with their affinities for these substrates.  However, all three species 

showed similar performance between substrates.  There are several plausible explanations 

for this result.  First, it is likely that light, rather than moisture or nutrient availability, is 

the resource that most limits plant growth in these dense, young forests (e.g., Ashmun 

and Pitelka 1984, Messier 1992, Canham et al. 1996).  Light transmission to the forest 

floor was extremely low, averaging ~5% of that available above the canopy.  Under these 

conditions, plants may be incapable of responding to differences in below-ground 

resources (Messier 1992, Canham et al. 1996).  It is also possible that the associations of 

Vaccinium with CWD, or Tiarella with the forest floor, do not reflect differences in the 

performance of established plants, but rather differential dispersal to, or germination or 

early survival on, these substrates (Christy and Mack 1984, Tappeiner and Alaback 1989, 

Caspersen and Saprunoff 2005).  Once plants are established, substrate differences may 

have little effect on plant growth or survival (Lemon 1945).  These alternative 

explanations clearly point to the need for studies of plant distribution and performance in 

forests in which light is less limiting, and for experiments that test whether substrate 

associations can be explained by differences in seed dispersal, germination, and/or early 

plant survival. 
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APPENDIX I: METHODS FOR CALCULATING POPULATION PROPORTIONS 

Calculations of population proportions followed the methods of Zar (1999).  For 

each plant species present in at least 1% of quadrats, the estimated population proportion 

(p) was calculated as follows: 

 p = X/n 

  where X = number of shoots (or fronds) occurring on CWD 

  and n = total number of shoots (or fronds). 

 For each population proportion, the upper and lower limits of a 95% confidence 

interval were calculated as a function of the F distribution and binomial distribution: 

 Lower limit:     X   
    X + (n – X + 1) * Fα(2), v1, v2  
  

where v1 = 2 * (n – X + 1) 

and v2 = 2X 

Upper limit:        (X + 1) * Fα(2), v’1, v’2 

   n – X + (X + 1) * Fα(2), v’1, v’2

where v’1 = 2 * (X + 1) 

and v’2 = 2 * (n – X) 

Species-specific values for these calculations are presented in Table 2. 
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Table 2.  Values used to estimate confidence limits for population proportions for species 
present in ≥1% of quadrats.  X = number of shoots on CWD; n = total number of shoots; 
v1 = numerator degrees of freedom, lower confidence limit; v2 = denominator degrees of 
freedom, lower confidence limit; v'1 = numerator degrees of freedom, upper confidence 
limit; v'2 = denominator degrees of freedom, upper confidence limit; p = proportion of 
total plant population on CWD; Lower Limit = lower limit of a 95% confidence interval; 
Upper Limit = upper limit of a 95% confidence interval.  Numerator and denominator 
degrees of freedom and α = 0.05(2) were used to determine the critical value of the F 
distribution. 

Species X n v1 v2 v'1 v'2
 

p 
Lower 
Limit 

Upper 
Limit 

Abies spp. 268 2643 4752 536 538 4750 0.10 0.09 0.10 
Achlys triphylla 11 136 252 22 24 250 0.08 0.00 0.14 
Athyrium filix-femina 2 446 890 4 6 888 0.00 0.00 0.02 
Blechnum spicant 115 412 596 230 232 594 0.28 0.24 0.33 
Chimaphila menziesii 12 322 622 24 26 620 0.04 0.02 0.06 
Clintonia uniflora 76 1574 2998 152 154 2996 0.05 0.04 0.06 
Cornus canadensis 380 1356 1954 760 762 1952 0.28 0.28 0.28 
Corallorhiza maculata  0 55 112 0 2 110 0.00 0.00 0.06 
Disporum spp. 0 23 48 0 2 46 0.00 0.00 0.15 
Dryopteris austriaca 62 167 212 124 126 210 0.37 0.30 0.45 
Goodyera oblongifolia 0 78 158 0 2 156 0.00 0.00 0.05 
Linnaea borealis 434 2930 4994 868 870 4992 0.15 0.15 0.15 
Listera cordata 38 197 320 76 78 318 0.19 0.14 0.25 
Maianthemum dilatatum 170 832 1326 340 342 1324 0.20 0.18 0.21 
Menziesia ferruginea 102 149 96 204 206 94 0.68 0.60 0.76 
Oplopanax horridus 3 17 30 6 8 28 0.18 0.04 0.43 
Polystichum munitum 5 337 666 10 12 664 0.01 0.00 0.03 
Pteridium aquilinum 41 519 958 82 84 956 0.08 0.06 0.10 
Pyrola uniflora 20 129 220 40 42 218 0.16 0.10 0.23 
Rubus lasiococcus 2 26 50 4 6 48 0.08 0.01 0.25 
Rubus pedatus 9 180 344 18 20 342 0.05 0.02 0.09 
Rubus ursinus 7 84 156 14 16 154 0.08 0.03 0.16 
Smilacina stellata 84 1021 1876 168 170 1874 0.08 0.07 0.10 
Streptopus amplexifolius 9 246 476 18 20 474 0.04 0.02 0.07 
Tiarella trifoliata 203 1475 2546 406 408 2544 0.14 0.14 0.14 
Trillium ovatum 2 51 100 4 6 98 0.04 0.00 0.14 
Tsuga heterophylla 5431 7621 4382 10862 10864 4380 0.71 0.71 0.71 
Vaccinium parvifolium 4800 7422 5246 9600 9602 5244 0.65 0.65 0.65 
Viola sempervirens 22 908 1774 44 46 1772 0.02 0.02 0.04 
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APPENDIX II: PHOTOGRAPHIC RECORDS OF PLANT EXCAVATIONS 

All plants were photographed after excavation.  The photographs provided here 

serve as examples of typical excavated pairs (plant rooted in CWD and a nearby plant 

rooted in the forest floor) of Maianthemum dilatatum, Tiarella trifoliata, and Vaccinium 

parvifolium.  All photographs are by the author. 
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Fig. 12.  Maianthemum dilatatum excavated from CWD (above) and the forest floor 
(below). 
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Fig. 13.  Tiarella trifoliata excavated from CWD (above) and the forest floor (below). 
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Fig. 14.  Vaccinium parvifolium excavated from CWD (above) and the forest floor 
(below). 

 


